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ABSTRACT 

The capability to manufacture large structures leads to weight savings and reduced risk relative 

to joining smaller components.  However, manufacture of increasingly large composite 

components is pushing the out-life limits of epoxy/ carbon fiber prepreg.  IM7/977-3 is an 

autoclave processable prepreg material, commonly used in aerospace structures.  The out-life 

limit is reported as 30 days by the manufacturer.  The purpose of this work was to evaluate the 

material processability and composite properties of 977-3 resin and IM7/977-3 prepreg that had 

been aged at room temperature for up to 60 days.  The neat resin was evaluated by differential 

scanning calorimetry, DSC, to characterize cure behavior of the aged material, as well as any 

change in activation energy.  The rise in the modulus of the uncured prepreg was monitored 

throughout the 60 days by dynamic mechanical analysis, DMA.  Composite panels made of the 

fresh and aged prepreg material were also characterized by DMA.  The overall test results 

suggested that IM7/977-3 was a robust material that offered quality laminates throughout this 

aging process when processed by autoclave. 

 

1. INTRODUCTION 

The Ares V Cargo Launch vehicle is slated to utilize epoxy/carbon fiber composites in several 

dry structures; most of which are of substantial size.  For example, the rocket interstage is 

planned to be 10 meters in diameter and 12 meters in height.  It has been anticipated that 

processing these structures could push the out-life limits of most conventional carbon 

fiber/epoxy prepreg materials. 

Many common epoxy systems used in the aerospace industry are composed of a mixture of 

epoxies, curing agent, and catalyst.  Many times the curing agent is an amine, which reacts with 

the epoxy at room temperature.  Consequently, prepreg material is kept frozen to avoid 

premature advancement of cure.   This requirement raises concern for the fabrication of a large 

part where plies initially placed on a tool would be kept at room temperature until the remainder 

of the part is laid-up.  Cure advancement of the epoxy within those early plies could alter the 

rheology and cure profile of the material, and result in inhomogeneous cure throughout the 



laminate.[1]  Additionally, loss of tack as the material sits on the tool may lead to voids or 

debonded areas within the  laminate.[2]   

In this work, the processability and cure chemistry of IM7/977-3 was investigated with respect to 

the materials out-time.  DSC and DMA were the primary characterization techniques.   DSC has 

been widely used to characterize kinetic parameters of epoxy cure; as well as other resin 

systems.[3]  Values such as activation energy, pre-exponential factor and rate constant can be 

obtained by either isothermal or dynamic experiments.  DMA is an effective technique for 

prepreg process characterization and in-situ cure monitoring by this method has been used to 

identify processes such as gelation and vitrification.[4]  Two to three ramp rates were used 

during DMA and DSC analysis and composite processing.  This included a 0.28
o
C (0.5

o
F) per 

minute ramp rate, which is slow with respect to the manufacturers recommended ramp rate, but 

likely representative of the actual rate of temperature change within a large part during autoclave 

or oven cure. 

Throughout the report, some data will be compared to a proprietary Resin X, which has a shorter 

out-time (21 days) as listed by its manufacturer.  While it is not a direct competitor to 977-3; 

Resin X is an epoxy.   

2. MATERIALS AND PROCEDURES 

2.1 Materials 

IM7/977-3 (145gsm) and 977-3 epoxy resin were purchased from Cytec Industries.  Both 

materials were used within the manufacturers recommended freezer life period. 

2.2 Out-time of resin and prepreg   

Samples for characterization of out-life by DSC or DMA were prepared by leaving prepreg or 

resin out of the freezer, at room temperature, but in a plastic Ziploc to avoid potential dust 

accumulation.  Samples were tested by these methods every ten days, up to 60 days out of the 

freezer. (10 days out, 20 days, 30 days, 40 days, etc.) 

A  modulated Differential Scanning Calorimeter (DSC/Model No Q1000, TA Instruments) was 

used to evaluate the cure reaction enthalpy of the epoxy resin, thus the degree of cure 

advancement.  The resin (8-12 mg) was weighed into a crimped aluminum DSC pan.  The tests 

were performed under nitrogen, with the ramp rates including 0.5
o
C/min, 2

o
C/min and 4

o
C/min.  

Kinetic parameters such as activation energy (Ea) were calculated following ASTM E698-05. 

Additional processing characteristics, including modulus, gelation, and vitrification temperatures 

were obtained by Dynamic Mechanical Analysis (DMA/Model No 2980, TA Instruments).  The 

uncured prepreg was placed in a torsional holder and the experiment was run following the 

manufacturers cure cycle, with the exception that the ramp rate was either 0.28
o
C/min 

(0.5
o
F/min) or 1.11

o
C/min (2

o
F/min).  

2.3 Out-time of laminates for autoclave processing 

Fresh prepreg plies were laid-up in a quasi-isotropic sequence, as a total of 16 layers in a 

balanced and symmetric sequence; [0,+45,90,-45]2s.  The prepreg stacks were then placed in a 



plastic Ziploc bag which was left open at room temperature for up to 60 days.  Panels were 

processed in the autoclave every 10 days, at 2 ramp rates, either 0.5
o
F per minute or 2

o
F per 

minute.  The cure profile used was:  

1. Bag panel and stabilize vacuum pressure at greater than 25 in Hg. 

2. Apply 85 psi autoclave pressure and vent vacuum bag to atmosphere when pressure 

reaches 20 psig.  

3. Heat to 177
o
C (350°F) at a rate of either 0.28 

o
C (0.5

o
F) or 1.11

 o
C (2.0

o
F) 

4. Hold at 177
o
C (350°F) for 360 minutes. 

5. Cool to 140°F at a rate of 1.5°F/min.  

6. Release pressure. 

The bagging sequence used is shown in Figure 1: 

 

Laminate quality was characterized by C-scan (Ultrapac 1650/Ultrasonics by Physical Acoustic).  

DMA measurements provided Tg and modulus values of the cured laminate. 

 

3. RESULTS AND DISCUSSION 

The following results describe the cure kinetics and rheology of fresh and aged 977-3 and the 

resultant mechanical performance of autoclave processed panels. 

3.1 DSC 

DSC experiments of the 977-3 resin were run at three different heating rates; 0.5
 o

C (0.28°F) per 

min, 2
 o

C (1.11°F) per min, and 4
o
C (2.22°F) per minute.  Acquisition of three data points 

allowed calculation of kinetic parameters including the activation energy of the cure reaction.   

Additionally, the enthalpy of cure was tracked with respect to resin out-time by integration of the 

area under the exothermic reaction.  Sample DSC curves are shown in Figure 2.  There was not a 

measureable change in the enthalpy of the reaction with out-time, nor in the temperature at which 

the reaction occurred.  This suggests little to no room temperature conversion of the resin well 

beyond the manufacturer‟s recommended out-life.  Furthermore, the resin maintained a „gummy‟ 

nature for up to 50 days at room temperature, becoming gradually brittle beyond that time.  For 

comparison, the DSC curves of out-lifed Resin X show not only a drop in the enthalpy of cure 

with aging, but also a reduction in the temperature at which cure occurs.  Such a trend is 

indicative of resin advancement.  This is undesirable as cure advancement of the resin prior to 



processing could lead to poor consolidation, variation in cure within the structure, and variation 

in mechanical performance.[5] 
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Figures 2a and 1b: DSC curves of fresh and out-lifed (1a) 977-3 resin and (1b) Resin X. 

 

The measured enthalpy of cure, as determined by the area under the exotherm in the DSC, is 

plotted in Figure 3 and illustrates the stability of 977-3 resin to room temperature out-time.   

 

Figure 3: Plot of enthalpy of epoxy cure vs. resin out-time for 977-3 resin. 

 

For clarity within the plot, the data for the 4oC per minute ramp was omitted as it tends to 

overlap the other datasets.   All of the ramp rates show an apparent increase in the area under the 

epoxy cure exotherm.  This may be attributed to moisture absorption into the resin as it was 

aged.  Past work has demonstrated an increase in epoxy reaction rate following prepreg aging in 

a humidity chamber.[6]  However, the influence of moisture absorption on the reactivity of 977-3 

resin was not investigated in this study. By comparison, Resin X showed a measureable 

reduction crosslinking enthalpy with out-time as plotted in Figure 4. 

 

Figure 4: Plot of enthalpy of epoxy cure vs. resin out-time for Resin X. 
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The cure kinetics of the resin were calculated from dynamic DSC experiments based on the 

Flynn/Wall/Ozawa method.[7]   The calculated Ea was stable over the 60 day out-time as plotted 

in Figure 5.  Stability of the activation energy implies there was limited conversion of the 977-3 

resin during the 60 days at room temperature.  The fluctuation in the data is likely due to the 

minimal number of data points collected at each out-time.  The Flynn/Wall/Ozawa method 

described in ASTM E698-05 requires a minimum three DSC scans to construct a plot of log  vs 

1/T; where  is the heating rate and T is the temperature of the peak of the reaction exotherm.  

An Arrhenius relationship is assumed and Ea is derived based on the slope of the curve.  The 

ASTM standard was followed; however, the fluctuation in the activation energy data cannot be 

explained at this time.  Additional ramp rates for each out-time may reduce the scatter.   

     

Figure 5: Activation energy of 977-3 resin from 0 to 60 days at room temperature. 

 

3.2 DMA 

The temperature profile used in the dynamic mechanical analysis experiments followed the 

manufacturers recommended cure profile, except the heating rate which was either 0.28 oC (0.5 
oF) or 1.11 oC (2 oF) per minute.  Therefore, the profile of the DMA experiment included a ramp 

to 177oC, followed by a 6 hour hold at that cure temperature.  Two variables were studied in this 

experiment including ramp rate and prepreg out-time.  Variation of ramp rate did not change the 

shape of the curve but shifted both storage modulus, E‟, and tan  curves with respect to the hold 

temperature in the cure cycle.  

- Figure 6 shows the storage modulus (E‟) vs. time scan (at the 1.11oC per minute ramp 

rate) of the fresh and 60 day out, uncured, epoxy prepreg.  The plots show a reduction in 

E‟ at the onset of the experiment which is related to softening of the matrix on heating 

from room temperature.  The mixture remains at a reduced E‟ until the hold temperature 

is reached in the cure profile (135 min, 177oC).  At this time, the storage modulus begins 
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to rise.  Two peaks occur in the tan  plot; the first peak maximum occurs at 145 minutes 

and appears to indicate the onset of gelation, and the second at 200 minutes would be 

indicative of vitrification.[8] 

 

- There was a considerable reduction in the onset temperature of cure at the slower cure 

rate, 0.28oC per minute.  The temperature scan also shows an early reduction in E‟ at the 

onset of the experiment due to softening of the matrix.  However, at this ramp rate, the 

modulus begins to build at 155 oC, which is more than 20 oC earlier than the 1.11 
o
C/min 

rate.  Tan  peaks related to gelation and vitrification occur at 163 oC and 177 oC, 

respectively. 

The vitrification peak does not necessarily mark the end of network formation, rather it indicates 

that the resin glass transition temperature, Tg, has reached the cure temperature.  As a result, the 

Tg of the isothermally cured resin will be higher than the cure temperature.  It is important to 

note that the peak associated with vitrification occurs at 177 
o
C at both ramp rates.  The primary 

difference was that the 0.28 oC per minute ramp led to vitrification at the onset of the isothermal 

hold, whereas at the faster ramp, vitrification was reached over an hour into the isothermal hold.  

Effects of the cure rate on the physical properties of a cured composite panel will be addressed 

later in the paper.  

As with DSC, the DMA results showed little variation in prepreg behavior with out-time up to 60 

days.  

 

Figure 6: Dynamic Mechanical Analysis plots of IM7/977-3 following 0 and 60 days out-time, 

following a 1.11 oC/min ramp rate. 

 



3.3 Composite Properties 

Quality of the cured laminates was examined by C-scan.  The results indicated comparable 

consolidation between 0 and 60 days; Figures 7 and 8 respectively.  Dark black or orange colors 

from the C-scan are indicative of a well consolidated part.  There is obvious panel to panel 

variation, but no significant changes that would suggest the out-life panel was not consolidated 

to a level comparable to the fresh prepreg.  However, processing differences were observed, 

including a reduction in resin bleed out as out-time increased as well as an increase in the 

average thickness of the laminate with out-time; from 1.78 mm with fresh prepreg to 1.93 mm 

with 60 day aged prepreg.  Microscopic imaging and acid digestion experiments will be used to 

determine void content within the laminates and any contribution of voids to the increase in 

thickness of the aged specimens. 

 

Figure 7: C-scan images of IM7/977-3 laminates processed from fresh prepreg at a 0.28
o
C (left) 

and 1.11
o
C (right) per minute ramp rate.  

 



Figure 8: C-scan images of IM7/977-3 laminates processed from 60 day out-time prepreg at a 

0.28 
o
C (left) and 1.11 

o
C (right) per minute ramp rate.  

Tg of the cured composite laminate was characterized by DMA in single cantilever beam mode.  

The Tg was taken as the intersection of extrapolated tangents of the plateau region and the 

modulus drop.  The data did show a drop of the Tg with out-time.  This was more significant 

when employing the 0.28 
o
C per minute ramp rate.   

Tg of the fresh material was 235 
o
C and 229 

o
C following ramp rates of  0.28 

o
C and 1.11 

o
C per 

minute, respectively.  The Tg of panels prepared from prepreg with a 60 day out-time had a Tg of 

211 
o
C and 222 

o
C where the ramp was 0.28 

o
C and 1.11

o
C per minute, respectively.  

The chemical analysis and flat panel preparation indicate that the prepreg was processable with 

little change to the laminate Tg.  However, these analyses do not account for the prepreg tack, 

which is critical for laying up complex parts.  Qualitative inspection of the prepreg showed a 

minimal amount of tack remaining at 60 days, and a significant loss of flexibility.  Such 

characterization should be included into future work. 

 

4. CONCLUSIONS 

DSC and DMA analyses demonstrated that IM7/977-3 offered minimal cure advancement of the 

resin when left at room temperature for up to 60 days.  DSC showed no change in the enthalpy of 

the crosslinking reaction with aging, or in the temperature at which the epoxy cure process 

occurs.  DMA also showed similar stability with out-time.  The DMA plots did however show a 

reduction in gelation and vitrification temperatures as the ramp rate was reduced from 1.11 
o
C to 

0.28 
o
C.  This, however, did not influence the Tg of the cured laminate; as there was not a 

substantial difference in the Tg of the fresh material prepared at the different ramps.  Ultrasonic 

scanning suggests the panels are well consolidated, even following 60 days at room temperature 

and ambient conditions; however, additional characterization of the laminate quality will be 

necessary. 
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